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Deep matrix factorization

® Def of Deep matrix factorization
Since standard matrix factorization can be viewed as a
two-layer neural network, a natural extension is to consider

deeper models. A deep matrix factorization of W € R4’ with
hidden dimensions di, ..., dy_1 € N is the parameterization:

W= WyWy_1--- Wi

where W, € RYG>*d-1j =1 ... N with dy =d,dy = d'.



Conjecture 1 from former papar

With small enough learning rate and initialization close enough to
the origin, gradient descent on a full-dimensional matrix
factorization converges to the minimum nuclear norm solution.



Table of Contents

@ Can the implicit regularization be captured by norms?



Can the implicit regularization be captured by norms?
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Can the implicit regularization be captured by norms?

® Hypothesis:
gradient descent on a depth-N matrix factorization implicitly
minimizes some norm that approximates rank, with the
approximation being more accurate the larger N is.

® Schatten-p quasi-norm ||W/|[¢ = ZT:iq(d’dl) af (W)
where o;(W): singular value of W.



Current theory does not distinguish depth-N from depth-2

® Implicit regularization and matrix sensing
former paper studied implicit regularization in shallow matrix
factorization by considering recovery of a positive semidefinite
matrix from sensing via symmetric measurements.

minyy e s¢ (W) = minyy ¢ sd I3 (yi— < ALW >)2..(2)

where Ay, ..., Ay € R%9 are symmtric and linearly independent



e Thm 1:
Assume the measurement matrices Ay, ..., A, commute. Then,
if Wepa := lima_s0 Wiha,oo () exists and is a global optimum
for (2) with /(Wsp,) = 0, it holds that
Wipa € argminWesiJ(W):O [|W/||+ i.e Wy, is a global
optimum with minimal nuclear norm.

® Wi, () : The final solution W = ZZT obtained from
running gradient flow on /(ZZT) with initialization «/
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Extend to depth-N

minyy ¢ sa (W)
= minyyess 3 2 (Vi— < Ay WyWi_1... W1 >)2...(3)

e Thm 2
Suppose N > 3, and that the matrices Ay, ..., A, commute.
Then if V_\/deep := lima—0 Waeep,00 (@) exists and is a global
optimum for (3) with /( V_Vdeep) =0, it holds that
Wdeep € argminWesi’,(W)zo [|W||« i.e V_Vdeep is a global
optimum with minimal nuclear norm.
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Cannot explain implicit regularization with Schatten quasi-

norm

® Proposition 1

For any dimension d > 3, there exist linearly independent
symmetric and commutable measurement matrices

A1, ..., An € R%9 and corresponding labels y1, .., ym € R,
such that the limit solution defined in Thm2 which has been
shown to satisfy Wjeep € argminyycsd j(w)=o [|W||« is not a
local minimum of the following program for any 0 < p < 1

mi“Wesi,/(W):o |W|ls,

12



Experiment

rank-5 matrix completion
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rank-5 matrix completion

5 020 - deptn 2, init 1.0e-03 az 8 -+~ deptn 2, it 1.08-03
£ —- depth 2, init 5.0e-04 em M —- depth 2, init 5.0e-04
2 —=— depth 2, init 2.5e.04 E < —=— deptn 2, int 2.56.04
8015 depth 3 2 20 depth 2, init 1.08-03 E7 depth 3
g =~ nuciear min 5 Hepth 2, ink 50804 g [, = rucienr mi
Eow @219 o depth 2, init 2.56-04 8 ground truth
8 " F] depth 3 g
8 005 Ene —%— nuclear min ®
2 oo a7 = = ground truth 5
2000 2300 3000 3500 2000 2500 3000 3300 2000 2500 3000 3500
# of observations # of observations # of observations
rank-10 matrix completion rank-10 matrix completion rank-10 matrix campletion
5 020 - dapth 2, init 1.0e-03 B «- depth 2, init 1.08-03
£ —== depth 2, Init 5 De-0a 14 —=- deptn 2, Init 5.06-04
sor depth 3 2 depth 2, init 1.0e.03 En depth 3
g . = nuciear min 5 depth 2, init 5.De-04 4 " —=— nuclear min
-1 % depth 2, init 2.5e-04 E = = ground truth
g 3 depth 3 £
S oos E nuciear ©
2 __ ground trutn 10
000 a beeesms

3500 w00 4500 5000
# of observations

3500 000 4500 5000
# of observations

3500 4000 4500 5000
# of abservations

13



e Compare minimum nuclear norm solution to those brought
forth by running gradient descent on matrix factorization of
different depths.

® When there are less entries observed, neither shallow nor deep

factorization minimize nuclear norm.

e crank(A) = exp(H(p1, ---, PQ))

ok
[lofl1

where o1, ...,00: A2| singular values , py =

H(p1, ..., pQ) = — Yo p_1 Pk log px
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Hypothesis

e Capturing implicit regularization in matrix factorization
through a single mathematical norm may not be posiible.
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Dynamical analysis

e \We derive differential equations governing the dynamics of
singular values and singular vectors for the product matrix W.

e Evolution rates of singular values turn out to be proportional
to their size exponentiated by 2-2/N , where N is the depth of
the factorization.

e \We explain how our findings imply a tendency towards
low-rank solutions, which intensifies with depth.

17



Dynamical analysis

o p(Wh,...Xn) = I(Wp..W1) , where | : general analytic loss

e gradient flow over factorization:

VVJ(t) = %ij(t) = _diqus(wl(t)? ey WN(t))7

j=1,..,N,t>0

18



Dynamical analysis

® | emma:

The product matrix W(t) can be expressed as:
W(t) = U(t)S(t)VT (1)

where U(t) € R%min(dd) - §(+) e Rmin(dd")min(d,d") " \/(t) e
R4 min(d.d") are analytic functions of t
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Dynamical analysis

® The diagonal elements of S(t) , which we denote by
01(t), - Tmin(d,a")(t) are signed singular values of W(t)

® The columns of U(t) and V(t), denoted uy(t), ..., Umin(d,qar)(t)
and vi, ..., Vimin(d,a)(t) are the corresponding left and right
singular vectors
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Dynamical analysis

e Thm3

The signed singular values of the product matrix W(t) evolve
by:

6,(t) = —N(o?(£)) v < TIW(2)), ur(t)v] (£) > ,
r=1,..,min(d,d")

If the matric factorization is non-degenerate , i.e has depth
N > 2, the singular values need not be signed(we may assume
or(t) >0 for all t
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Dynamical analysis

® |emma

Assume that at initialization, the singular values of the product
matirx W(t) are distinct and different from zero. Then, its
singular vectors evolve by:

Uty = —U@) (FE) e [UTOVEUW @)V (DS + SV T (Ve (Wn)U(E)])
— (L —U®UT () CEW )V (1) (S (1)) F~F
V() = V() (F)o [SHUTHVEWR)V(E) + VT (6)VE (W(E)U()S(t)])

11

— Ly = VOVT (1)) VET (W)U T (£)(S* (1))~

where Iy and Iy are the identity matrices of sizes d x d and
d" x d’ respectively, ® stands for the Hadamard product , and
the matrix F(t) € R™(%:d" is skew-symmetric with

((O’E/)% — (af(t))%)’l in its (r,r')'th entry, r # r/ -



Dynamical analysis

e Corollary 1:

Assume the conditions of Lemma , and the matrix
factorization is non-degenerative i.e has depth N > 2. Then,
for any time t such that the singular vectors of the product
matrix W(t) are stationary, i.e W(t) =0 and V(t) =0, it
holds that UT(t)v/(W(t))V(t) is diagonal, meaning they
align with the singular vectors of V/(W(t))
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Dynamical analysis

® | emma and Corollary suggests that a "goal" of gradient flow
on a deep matrix factorization is to align singular vectors of
the product matrix with those of the gradient.
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Empirical demonstration
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Interpretation

® |t shows that for a non-degenerate deep matrix factorization,
i.e one with depth N > 2, under gradient descent with small
learning rate and near-zero initialization, singular values of the
product matrix are subject to an enhancement/attenuation

effect as described above.

® Singular value is an implicit regularization towards low rank,
which intensifies with depth.
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Conclusion

® Through theory and experiments, we questioned prevalent
norm-based explanations for implicit regularization in matrix
factorization , and offered an alternative, dynamical approach.
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