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Deep matrix factorization

• Def of Deep matrix factorization
　

Since standard matrix factorization can be viewed as a
two-layer neural network, a natural extension is to consider
deeper models. A deep matrix factorization of W ∈ Rd×d ′ , with
hidden dimensions d1, ..., dN−1 ∈ N is the parameterization:
　

W = WNWN−1 · · ·W1

　

where Wj ∈ Rdj×dj−1 j = 1, ....,N with dN = d , d0 = d ′.
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Conjecture 1 from former papar

With small enough learning rate and initialization close enough to
the origin, gradient descent on a full-dimensional matrix
factorization converges to the minimum nuclear norm solution.
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Can the implicit regularization be captured by norms?

• Hypothesis:
gradient descent on a depth-N matrix factorization implicitly
minimizes some norm that approximates rank, with the
approximation being more accurate the larger N is.
　

• Schatten-p quasi-norm ||W ||pSp =
∑min(d ,d ′)

r=1 σpr (W )

where σi (W ): singular value of W.
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Current theory does not distinguish depth-N from depth-2

• Implicit regularization and matrix sensing
former paper studied implicit regularization in shallow matrix
factorization by considering recovery of a positive semidefinite
matrix from sensing via symmetric measurements.
　

minW∈Sd
+
l(W ) = minW∈Sd

+

1
2
∑m

i=1(yi− < Ai ,W >)2....(2)
　

where A1, ...,Am ∈ Rd ,d are symmtric and linearly independent
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Thm 1

• Thm 1:
Assume the measurement matrices A1, ...,Am commute. Then,
if W̄sha := limα→0 Wsha,∞(α) exists and is a global optimum
for (2) with l(W̄sha) = 0, it holds that
W̄sha ∈ argminW∈Sd

+,l(W )=0 ||W ||∗ i.e W̄sha is a global
optimum with minimal nuclear norm.
　

• Wsha,(α) : The final solution W = ZZT obtained from
running gradient flow on l(ZZT ) with initialization αI
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Extend to depth-N

minW∈Sd
+
l(W )

= minW∈Sd
+

1
2
∑m

i=1(yi− < Ai ,WNWN−1...W1 >)2....(3)
　

• Thm 2
Suppose N ≥ 3 , and that the matrices A1, ...,Am commute.
Then if W̄deep := limα→0 Wdeep,∞(α) exists and is a global
optimum for (3) with l(W̄deep) = 0, it holds that
W̄deep ∈ argminW∈Sd

+,l(W )=0 ||W ||∗ i.e W̄deep is a global
optimum with minimal nuclear norm.
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Cannot explain implicit regularization with Schatten quasi-
norm

• Proposition 1
　

For any dimension d ≥ 3, there exist linearly independent
symmetric and commutable measurement matrices
A1, ...,Am ∈ Rd ,d , and corresponding labels y1, .., ym ∈ R,
such that the limit solution defined in Thm2 which has been
shown to satisfy W̄deep ∈ argminW∈Sd

+,l(W )=0 ||W ||∗ is not a
local minimum of the following program for any 0 < p < 1
　

minW∈Sd
+,l(W )=0 ||W ||Sp
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Experiment
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Experiment

• Compare minimum nuclear norm solution to those brought
forth by running gradient descent on matrix factorization of
different depths.
　

• When there are less entries observed, neither shallow nor deep
factorization minimize nuclear norm.
　

• erank(A) = exp(H(p1, ..., pQ))

　

where σ1, ..., σQ : A의 singular values , pk = σk
||σ||1

H(p1, ..., pQ) = −
∑Q

k=1 pk log pk
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Hypothesis

• Capturing implicit regularization in matrix factorization
through a single mathematical norm may not be posiible.
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Dynamical analysis

• We derive differential equations governing the dynamics of
singular values and singular vectors for the product matrix W.
　

• Evolution rates of singular values turn out to be proportional
to their size exponentiated by 2-2/N , where N is the depth of
the factorization.
　

• We explain how our findings imply a tendency towards
low-rank solutions, which intensifies with depth.
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Dynamical analysis

• φ(W1, ...,XN) = l(WN ...W1) , where l : general analytic loss
　

• gradient flow over factorization:
　

Ẇj(t) := d
dtWj(t) = − d

dWj
φ(W1(t), ...,WN(t)),

　

j = 1, ...,N, t ≥ 0
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Dynamical analysis

• Lemma:
　

The product matrix W (t) can be expressed as:
W (t) = U(t)S(t)V T (t)

　

where U(t) ∈ Rd ,min(d ,d ′), S(t) ∈ Rmin(d ,d ′),min(d ,d ′), V (t) ∈
Rd ′,min(d ,d ′) are analytic functions of t
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Dynamical analysis

• The diagonal elements of S(t) , which we denote by
σ1(t), ..., σmin(d ,d ′)(t) are signed singular values of W(t)
　

• The columns of U(t) and V(t), denoted u1(t), ..., umin(d ,d ′)(t)

and v1, ...., vmin(d ,d ′)(t) are the corresponding left and right
singular vectors

20



Dynamical analysis

• Thm3
　

The signed singular values of the product matrix W(t) evolve
by:
　

σ̇r (t) = −N(σ2
r (t))1− 1

N < Ol(W (t)), ur (t)vTr (t) > ,
r = 1, ...,min(d , d ′)

　

If the matric factorization is non-degenerate , i.e has depth
N ≥ 2, the singular values need not be signed(we may assume
σr (t) ≥ 0 for all t
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Dynamical analysis

• Lemma
　

Assume that at initialization, the singular values of the product
matirx W(t) are distinct and different from zero. Then, its
singular vectors evolve by:
　

　

where Id and Id ′ are the identity matrices of sizes d × d and
d ′ × d ′ respectively, � stands for the Hadamard product , and
the matrix F (t) ∈ Rmin(d ,d ′ is skew-symmetric with
((σ2

r ′)
1
n − (σ2

r (t))
1
n )−1 in its (r,r’)’th entry, r 6= r ′ 22



Dynamical analysis

• Corollary 1:
　

Assume the conditions of Lemma , and the matrix
factorization is non-degenerative i.e has depth N ≥ 2. Then,
for any time t such that the singular vectors of the product
matrix W(t) are stationary, i.e Ẇ (t) = 0 and V̇ (t) = 0, it
holds that UT (t)Ol(W (t))V (t) is diagonal, meaning they
align with the singular vectors of Ol(W (t))
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Dynamical analysis

• Lemma and Corollary suggests that a "goal" of gradient flow
on a deep matrix factorization is to align singular vectors of
the product matrix with those of the gradient.
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Empirical demonstration
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Interpretation

• It shows that for a non-degenerate deep matrix factorization,
i.e one with depth N ≥ 2 , under gradient descent with small
learning rate and near-zero initialization, singular values of the
product matrix are subject to an enhancement/attenuation
effect as described above.
　

• Singular value is an implicit regularization towards low rank,
which intensifies with depth.
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Conclusion

• Through theory and experiments, we questioned prevalent
norm-based explanations for implicit regularization in matrix
factorization , and offered an alternative, dynamical approach.
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