Implicit Regularization in Deep Matrix Factorization

SeokHoon Park
June 29, 2021

Seoul National University

Table of Contents

(1) Introduction
(2) Can the implicit regularization be captured by norms?
(3) Dynamical analysis
(4) Conclusion

Table of Contents

(1) Introduction
(2) Can the implicit regularization be captured by norms?
(3) Dynamical analysis
(4) Conclusion

Deep matrix factorization

- Def of Deep matrix factorization

Since standard matrix factorization can be viewed as a two-layer neural network, a natural extension is to consider deeper models. A deep matrix factorization of $\mathrm{W} \in \mathrm{R}^{d \times d^{\prime}}$, with hidden dimensions $d_{1}, \ldots, d_{N-1} \in \mathbb{N}$ is the parameterization:

$$
W=W_{N} W_{N-1} \cdots W_{1}
$$

where $W_{j} \in \mathbb{R}^{d_{j} \times d_{j-1} j}=1, \ldots ., N$ with $d_{N}=d, d_{0}=d^{\prime}$.

Conjecture 1 from former papar

With small enough learning rate and initialization close enough to the origin, gradient descent on a full-dimensional matrix factorization converges to the minimum nuclear norm solution.

Table of Contents

(1) Introduction

2 Can the implicit regularization be captured by norms?
(3) Dynamical analysis
4. Conclusion

Can the implicit regularization be captured by norms?

Can the implicit regularization be captured by norms?

- Hypothesis:
gradient descent on a depth- N matrix factorization implicitly minimizes some norm that approximates rank, with the approximation being more accurate the larger N is.
- Schatten-p quasi-norm $\|W\|_{S_{p}}^{p}=\sum_{r=1}^{\min \left(d, d^{\prime}\right)} \sigma_{r}^{p}(W)$ where $\sigma_{i}(W)$: singular value of W.

Current theory does not distinguish depth-N from depth-2

- Implicit regularization and matrix sensing former paper studied implicit regularization in shallow matrix factorization by considering recovery of a positive semidefinite matrix from sensing via symmetric measurements.
$\min _{W \in S_{+}^{d}} I(W)=\min _{W \in S_{+}^{d}} \frac{1}{2} \sum_{i=1}^{m}\left(y_{i}-<A_{i}, W>\right)^{2} \ldots$ (2)
where $A_{1}, \ldots, A_{m} \in \mathbb{R}^{d, d}$ are symmtric and linearly independent
- Thm 1:

Assume the measurement matrices A_{1}, \ldots, A_{m} commute. Then, if $\bar{W}_{\text {sha }}:=\lim _{\alpha \rightarrow 0} W_{\text {sha, } \infty}(\alpha)$ exists and is a global optimum for (2) with $I\left(\bar{W}_{\text {sha }}\right)=0$, it holds that $\bar{W}_{\text {sha }} \in \operatorname{argmin}_{W \in S_{+}^{d}, l(W)=0}\|W\|_{*}$ i.e $\bar{W}_{\text {sha }}$ is a global optimum with minimal nuclear norm.

- $W_{\text {sha, }}(\alpha)$: The final solution $W=Z Z^{T}$ obtained from running gradient flow on $I\left(Z Z^{\top}\right)$ with initialization αI

Extend to depth-N

$$
\begin{aligned}
& \min _{W \in S_{+}^{d}} I(W) \\
& =\min _{W \in S_{+}^{d}} \frac{1}{2} \sum_{i=1}^{m}\left(y_{i}-<A_{i}, W_{N} W_{N-1} \ldots W_{1}>\right)^{2} \ldots \text { (3) }
\end{aligned}
$$

- Thm 2

Suppose $N \geq 3$, and that the matrices A_{1}, \ldots, A_{m} commute. Then if $\bar{W}_{\text {deep }}:=\lim _{\alpha \rightarrow 0} W_{\text {deep, } \infty}(\alpha)$ exists and is a global optimum for (3) with $I\left(\bar{W}_{\text {deep }}\right)=0$, it holds that $\bar{W}_{\text {deep }} \in \operatorname{argmin}_{W \in S_{+}^{d}, l(W)=0}\|W\|_{*}$ i.e $\bar{W}_{\text {deep }}$ is a global optimum with minimal nuclear norm.

- Proposition 1

For any dimension $d \geq 3$, there exist linearly independent symmetric and commutable measurement matrices $A_{1}, \ldots, A_{m} \in \mathbb{R}^{d, d}$, and corresponding labels $y_{1}, . ., y_{m} \in \mathbb{R}$, such that the limit solution defined in Thm 2 which has been shown to satisfy $\bar{W}_{\text {deep }} \in \operatorname{argmin}_{W \in S_{+}^{d}, l(W)=0}\|W\|_{*}$ is not a local minimum of the following program for any $0<p<1$

$$
\min _{W \in S_{+}^{d}, l(W)=0}\|W\|_{S_{p}}
$$

Experiment

rank-10 matrix completion

Experiment

- Compare minimum nuclear norm solution to those brought forth by running gradient descent on matrix factorization of different depths.
- When there are less entries observed, neither shallow nor deep factorization minimize nuclear norm.
- $\operatorname{erank}(A)=\exp \left(H\left(p_{1}, \ldots, p_{Q}\right)\right)$
where $\sigma_{1}, \ldots, \sigma_{Q}: \mathrm{A}$ 의 singular values, $p_{k}=\frac{\sigma_{k}}{\|\sigma\|_{1}}$ $H\left(p_{1}, \ldots, p_{Q}\right)=-\sum_{k=1}^{Q} p_{k} \log p_{k}$

Hypothesis

- Capturing implicit regularization in matrix factorization through a single mathematical norm may not be posiible.

Table of Contents

(1) Introduction
(2) Can the implicit regularization be captured by norms?
(3) Dynamical analysis
(4) Conclusion

Dynamical analysis

- We derive differential equations governing the dynamics of singular values and singular vectors for the product matrix W .
- Evolution rates of singular values turn out to be proportional to their size exponentiated by $2-2 / \mathrm{N}$, where N is the depth of the factorization.
- We explain how our findings imply a tendency towards low-rank solutions, which intensifies with depth.

Dynamical analysis

- $\phi\left(W_{1}, \ldots, X_{N}\right)=I\left(W_{N} \ldots W_{1}\right)$, where I : general analytic loss
- gradient flow over factorization:

$$
\begin{aligned}
& \dot{W}_{j}(t):=\frac{d}{d t} W_{j}(t)=-\frac{d}{d W_{j}} \phi\left(W_{1}(t), \ldots, W_{N}(t)\right), \\
& j=1, \ldots, N, t \geq 0
\end{aligned}
$$

Dynamical analysis

- Lemma:

The product matrix $W(t)$ can be expressed as: $W(t)=U(t) S(t) V^{T}(t)$
where $U(t) \in \mathbb{R}^{d, \min \left(d, d^{\prime}\right)}, S(t) \in \mathbb{R}^{\min \left(d, d^{\prime}\right), \min \left(d, d^{\prime}\right)}, V(t) \in$ $\mathbb{R}^{d^{\prime}, \min \left(d, d^{\prime}\right)}$ are analytic functions of t

Dynamical analysis

- The diagonal elements of $S(t)$, which we denote by $\sigma_{1}(t), \ldots, \sigma_{\min \left(d, d^{\prime}\right)}(t)$ are signed singular values of $\mathrm{W}(\mathrm{t})$
- The columns of $\mathrm{U}(\mathrm{t})$ and $\mathrm{V}(\mathrm{t})$, denoted $u_{1}(t), \ldots, u_{\min \left(d, d^{\prime}\right)}(t)$ and $v_{1}, \ldots, v_{\min \left(d, d^{\prime}\right)}(t)$ are the corresponding left and right singular vectors

Dynamical analysis

- Thm3

The signed singular values of the product matrix $W(t)$ evolve by:
$\dot{\sigma}_{r}(t)=-N\left(\sigma_{r}^{2}(t)\right)^{1-\frac{1}{N}}<\nabla \mathrm{I}(W(t)), u_{r}(t) v_{r}^{T}(t)>$,
$r=1, \ldots, \min \left(d, d^{\prime}\right)$

If the matric factorization is non-degenerate, i.e has depth $N \geq 2$, the singular values need not be signed(we may assume $\sigma_{r}(t) \geq 0$ for all t

Dynamical analysis

- Lemma

Assume that at initialization, the singular values of the product matirx $W(t)$ are distinct and different from zero. Then, its singular vectors evolve by:

$$
\begin{aligned}
\dot{U}(t)= & -U(t)\left(F(t) \odot\left[U^{\top}(t) \nabla \ell(W(t)) V(t) S(t)+S(t) V^{\top}(t) \nabla \ell^{\top}(W(t)) U(t)\right]\right) \\
& -\left(I_{d}-U(t) U^{\top}(t)\right) \nabla \ell(W(t)) V(t)\left(S^{2}(t)\right)^{\frac{1}{2}-\frac{1}{N}} \\
\dot{V}(t)= & -V(t)\left(F(t) \odot\left[S(t) U^{\top}(t) \nabla \ell(W(t)) V(t)+V^{\top}(t) \nabla \ell^{\top}(W(t)) U(t) S(t)\right]\right) \\
& -\left(I_{d^{\prime}}-V(t) V^{\top}(t)\right) \nabla \ell^{\top}(W(t)) U^{\top}(t)\left(S^{2}(t)\right)^{\frac{1}{2}-\frac{1}{N}},
\end{aligned}
$$

where I_{d} and $I_{d^{\prime}}$ are the identity matrices of sizes $d \times d$ and $d^{\prime} \times d^{\prime}$ respectively, \odot stands for the Hadamard product, and the matrix $F(t) \in \mathbb{R}^{\min \left(d, d^{\prime}\right.}$ is skew-symmetric with $\left(\left(\sigma_{r^{\prime}}^{2}\right)^{\frac{1}{n}}-\left(\sigma_{r}^{2}(t)\right)^{\frac{1}{n}}\right)^{-1}$ in its $\left(r, r^{\prime}\right)^{\prime}$ th entry, $r \neq r^{\prime}$

Dynamical analysis

- Corollary 1 :

Assume the conditions of Lemma, and the matrix factorization is non-degenerative i.e has depth $N \geq 2$. Then, for any time t such that the singular vectors of the product matrix $W(\mathrm{t})$ are stationary, i.e $\dot{W}(t)=0$ and $\dot{V}(t)=0$, it holds that $U^{T}(t) \nabla I(W(t)) V(t)$ is diagonal, meaning they align with the singular vectors of $\nabla I(W(t))$

Dynamical analysis

- Lemma and Corollary suggests that a "goal" of gradient flow on a deep matrix factorization is to align singular vectors of the product matrix with those of the gradient.

Empirical demonstration

Interpretation

- It shows that for a non-degenerate deep matrix factorization, i.e one with depth $N \geq 2$, under gradient descent with small learning rate and near-zero initialization, singular values of the product matrix are subject to an enhancement/attenuation effect as described above.
- Singular value is an implicit regularization towards low rank, which intensifies with depth.

Table of Contents

(1) Introduction
(2) Can the implicit regularization be captured by norms?
(3) Dynamical analysis
(4) Conclusion

Conclusion

- Through theory and experiments, we questioned prevalent norm-based explanations for implicit regularization in matrix factorization, and offered an alternative, dynamical approach.

